\(\int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\) [391]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 317 \[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2 A-A b^2-2 a b B\right )}{d \sqrt {\tan (c+d x)}} \]

[Out]

1/2*(a^2*(A-B)-b^2*(A-B)-2*a*b*(A+B))*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)+1/2*(a^2*(A-B)-b^2*(A-B)-2
*a*b*(A+B))*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)+1/4*(2*a*b*(A-B)+a^2*(A+B)-b^2*(A+B))*ln(1-2^(1/2)*ta
n(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)-1/4*(2*a*b*(A-B)+a^2*(A+B)-b^2*(A+B))*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d
*x+c))/d*2^(1/2)+2*(A*a^2-A*b^2-2*B*a*b)/d/tan(d*x+c)^(1/2)-2/5*a^2*A/d/tan(d*x+c)^(5/2)-2/3*a*(2*A*b+B*a)/d/t
an(d*x+c)^(3/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3685, 3709, 3610, 3615, 1182, 1176, 631, 210, 1179, 642} \[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}+\frac {2 \left (a^2 A-2 a b B-A b^2\right )}{d \sqrt {\tan (c+d x)}}+\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (a B+2 A b)}{3 d \tan ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[((a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

-(((a^2*(A - B) - b^2*(A - B) - 2*a*b*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d)) + ((a^2*(A
 - B) - b^2*(A - B) - 2*a*b*(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) + ((2*a*b*(A - B) + a
^2*(A + B) - b^2*(A + B))*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - ((2*a*b*(A - B)
+ a^2*(A + B) - b^2*(A + B))*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - (2*a^2*A)/(5*
d*Tan[c + d*x]^(5/2)) - (2*a*(2*A*b + a*B))/(3*d*Tan[c + d*x]^(3/2)) + (2*(a^2*A - A*b^2 - 2*a*b*B))/(d*Sqrt[T
an[c + d*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3685

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(B*c - A*d))*(b*c - a*d)^2*((c + d*Tan[e + f*x])^(n + 1)/(f*d^2*(n +
 1)*(c^2 + d^2))), x] + Dist[1/(d*(c^2 + d^2)), Int[(c + d*Tan[e + f*x])^(n + 1)*Simp[B*(b*c - a*d)^2 + A*d*(a
^2*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2*c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))*Tan[e + f*x] + b^2*B*(
c^2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 +
b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]

Rule 3709

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2)
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}+\int \frac {a (2 A b+a B)-\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)+b^2 B \tan ^2(c+d x)}{\tan ^{\frac {5}{2}}(c+d x)} \, dx \\ & = -\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\int \frac {-a^2 A+A b^2+2 a b B+\left (b^2 B-a (2 A b+a B)\right ) \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx \\ & = -\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2 A-A b^2-2 a b B\right )}{d \sqrt {\tan (c+d x)}}+\int \frac {b^2 B-a (2 A b+a B)+\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx \\ & = -\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2 A-A b^2-2 a b B\right )}{d \sqrt {\tan (c+d x)}}+\frac {2 \text {Subst}\left (\int \frac {b^2 B-a (2 A b+a B)+\left (a^2 A-A b^2-2 a b B\right ) x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = -\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2 A-A b^2-2 a b B\right )}{d \sqrt {\tan (c+d x)}}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = -\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2 A-A b^2-2 a b B\right )}{d \sqrt {\tan (c+d x)}}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d} \\ & = \frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2 A-A b^2-2 a b B\right )}{d \sqrt {\tan (c+d x)}}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d} \\ & = -\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a (2 A b+a B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2 A-A b^2-2 a b B\right )}{d \sqrt {\tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.66 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.38 \[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \left (\left (-3 a^2 A+3 A b^2+6 a b B\right ) \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},1,-\frac {1}{4},-\tan ^2(c+d x)\right )-5 \left (2 a A b+a^2 B-b^2 B\right ) \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},1,\frac {1}{4},-\tan ^2(c+d x)\right ) \tan (c+d x)-b (3 A b+6 a B+5 b B \tan (c+d x))\right )}{15 d \tan ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[((a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

(2*((-3*a^2*A + 3*A*b^2 + 6*a*b*B)*Hypergeometric2F1[-5/4, 1, -1/4, -Tan[c + d*x]^2] - 5*(2*a*A*b + a^2*B - b^
2*B)*Hypergeometric2F1[-3/4, 1, 1/4, -Tan[c + d*x]^2]*Tan[c + d*x] - b*(3*A*b + 6*a*B + 5*b*B*Tan[c + d*x])))/
(15*d*Tan[c + d*x]^(5/2))

Maple [A] (verified)

Time = 0.03 (sec) , antiderivative size = 270, normalized size of antiderivative = 0.85

method result size
derivativedivides \(\frac {-\frac {2 \left (-A \,a^{2}+A \,b^{2}+2 B a b \right )}{\sqrt {\tan \left (d x +c \right )}}-\frac {2 A \,a^{2}}{5 \tan \left (d x +c \right )^{\frac {5}{2}}}-\frac {2 a \left (2 A b +B a \right )}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}+\frac {\left (-2 A a b -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (A \,a^{2}-A \,b^{2}-2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(270\)
default \(\frac {-\frac {2 \left (-A \,a^{2}+A \,b^{2}+2 B a b \right )}{\sqrt {\tan \left (d x +c \right )}}-\frac {2 A \,a^{2}}{5 \tan \left (d x +c \right )^{\frac {5}{2}}}-\frac {2 a \left (2 A b +B a \right )}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}+\frac {\left (-2 A a b -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (A \,a^{2}-A \,b^{2}-2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(270\)
parts \(\frac {\left (A \,b^{2}+2 B a b \right ) \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2}{\sqrt {\tan \left (d x +c \right )}}\right )}{d}+\frac {\left (2 A a b +B \,a^{2}\right ) \left (-\frac {2}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {A \,a^{2} \left (\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2}{5 \tan \left (d x +c \right )^{\frac {5}{2}}}+\frac {2}{\sqrt {\tan \left (d x +c \right )}}\right )}{d}+\frac {B \,b^{2} \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}\) \(430\)

[In]

int((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(-A*a^2+A*b^2+2*B*a*b)/tan(d*x+c)^(1/2)-2/5*A*a^2/tan(d*x+c)^(5/2)-2/3*a*(2*A*b+B*a)/tan(d*x+c)^(3/2)+
1/4*(-2*A*a*b-B*a^2+B*b^2)*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan
(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(A*a^2-A*b^2-2*B*a*b
)*2^(1/2)*(ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1
/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4325 vs. \(2 (279) = 558\).

Time = 0.73 (sec) , antiderivative size = 4325, normalized size of antiderivative = 13.64 \[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-1/30*(15*d*sqrt((2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 + d^2*sqr
t(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3
*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*
A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2)*log(((A*a^2 - 2*
B*a*b - A*b^2)*d^3*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B
^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^
3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4)
- ((A^2*B - B^3)*a^6 + 2*(A^3 - 5*A*B^2)*a^5*b - (23*A^2*B - 7*B^3)*a^4*b^2 - 4*(3*A^3 - 7*A*B^2)*a^3*b^3 + (2
3*A^2*B - 7*B^3)*a^2*b^4 + 2*(A^3 - 5*A*B^2)*a*b^5 - (A^2*B - B^3)*b^6)*d)*sqrt((2*A*B*a^4 - 12*A*B*a^2*b^2 +
2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A
*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 +
 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a
*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^7*b - 4*(A^4 - B^4)*a^
6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3 - 10*(A^4 - B^4)*a^4*b^4 + 8*(A^3*B + A*B^3)*a^3*b^5 - 4*(A^4 - B^4)*a^2*b^6
 + 8*(A^3*B + A*B^3)*a*b^7 + (A^4 - B^4)*b^8)*sqrt(tan(d*x + c)))*tan(d*x + c)^3 - 15*d*sqrt((2*A*B*a^4 - 12*A
*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 -
16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 -
102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3
*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2)*log(-((A*a^2 - 2*B*a*b - A*b^2)*d^3*sqrt(-((A^4 -
2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)
*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3
*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4) - ((A^2*B - B^3)*a^6 + 2*(A^3 - 5
*A*B^2)*a^5*b - (23*A^2*B - 7*B^3)*a^4*b^2 - 4*(3*A^3 - 7*A*B^2)*a^3*b^3 + (23*A^2*B - 7*B^3)*a^2*b^4 + 2*(A^3
 - 5*A*B^2)*a*b^5 - (A^2*B - B^3)*b^6)*d)*sqrt((2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b -
 4*(A^2 - B^2)*a*b^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B
^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A
*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^
8)/d^4))/d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^7*b - 4*(A^4 - B^4)*a^6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3
 - 10*(A^4 - B^4)*a^4*b^4 + 8*(A^3*B + A*B^3)*a^3*b^5 - 4*(A^4 - B^4)*a^2*b^6 + 8*(A^3*B + A*B^3)*a*b^7 + (A^4
 - B^4)*b^8)*sqrt(tan(d*x + c)))*tan(d*x + c)^3 - 15*d*sqrt((2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 -
 B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 - d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A
^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 1
12*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*
B^2 + B^4)*b^8)/d^4))/d^2)*log(((A*a^2 - 2*B*a*b - A*b^2)*d^3*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B -
 A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2
 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)
*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4) + ((A^2*B - B^3)*a^6 + 2*(A^3 - 5*A*B^2)*a^5*b - (23*A^2*B - 7*B^3)
*a^4*b^2 - 4*(3*A^3 - 7*A*B^2)*a^3*b^3 + (23*A^2*B - 7*B^3)*a^2*b^4 + 2*(A^3 - 5*A*B^2)*a*b^5 - (A^2*B - B^3)*
b^6)*d)*sqrt((2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 - d^2*sqrt(-(
(A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B -
 A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*
B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2) - ((A^4 - B^4)*a^8 -
 8*(A^3*B + A*B^3)*a^7*b - 4*(A^4 - B^4)*a^6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3 - 10*(A^4 - B^4)*a^4*b^4 + 8*(A^3
*B + A*B^3)*a^3*b^5 - 4*(A^4 - B^4)*a^2*b^6 + 8*(A^3*B + A*B^3)*a*b^7 + (A^4 - B^4)*b^8)*sqrt(tan(d*x + c)))*t
an(d*x + c)^3 + 15*d*sqrt((2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3
- d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 +
 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*
A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2)*log(-((
A*a^2 - 2*B*a*b - A*b^2)*d^3*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2
*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B -
 A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*
b^8)/d^4) + ((A^2*B - B^3)*a^6 + 2*(A^3 - 5*A*B^2)*a^5*b - (23*A^2*B - 7*B^3)*a^4*b^2 - 4*(3*A^3 - 7*A*B^2)*a^
3*b^3 + (23*A^2*B - 7*B^3)*a^2*b^4 + 2*(A^3 - 5*A*B^2)*a*b^5 - (A^2*B - B^3)*b^6)*d)*sqrt((2*A*B*a^4 - 12*A*B*
a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 - d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*
(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102
*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B
- A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^7*b - 4*(A^4
 - B^4)*a^6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3 - 10*(A^4 - B^4)*a^4*b^4 + 8*(A^3*B + A*B^3)*a^3*b^5 - 4*(A^4 - B^
4)*a^2*b^6 + 8*(A^3*B + A*B^3)*a*b^7 + (A^4 - B^4)*b^8)*sqrt(tan(d*x + c)))*tan(d*x + c)^3 + 4*(3*A*a^2 - 15*(
A*a^2 - 2*B*a*b - A*b^2)*tan(d*x + c)^2 + 5*(B*a^2 + 2*A*a*b)*tan(d*x + c))*sqrt(tan(d*x + c)))/(d*tan(d*x + c
)^3)

Sympy [F]

\[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \left (a + b \tan {\left (c + d x \right )}\right )^{2}}{\tan ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+b*tan(d*x+c))**2*(A+B*tan(d*x+c))/tan(d*x+c)**(7/2),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**2/tan(c + d*x)**(7/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 276, normalized size of antiderivative = 0.87 \[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\frac {30 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 30 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 15 \, \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + 15 \, \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \frac {8 \, {\left (3 \, A a^{2} - 15 \, {\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \tan \left (d x + c\right )^{2} + 5 \, {\left (B a^{2} + 2 \, A a b\right )} \tan \left (d x + c\right )\right )}}{\tan \left (d x + c\right )^{\frac {5}{2}}}}{60 \, d} \]

[In]

integrate((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

1/60*(30*sqrt(2)*((A - B)*a^2 - 2*(A + B)*a*b - (A - B)*b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)
))) + 30*sqrt(2)*((A - B)*a^2 - 2*(A + B)*a*b - (A - B)*b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c
)))) - 15*sqrt(2)*((A + B)*a^2 + 2*(A - B)*a*b - (A + B)*b^2)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) +
1) + 15*sqrt(2)*((A + B)*a^2 + 2*(A - B)*a*b - (A + B)*b^2)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1
) - 8*(3*A*a^2 - 15*(A*a^2 - 2*B*a*b - A*b^2)*tan(d*x + c)^2 + 5*(B*a^2 + 2*A*a*b)*tan(d*x + c))/tan(d*x + c)^
(5/2))/d

Giac [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 15.11 (sec) , antiderivative size = 3782, normalized size of antiderivative = 11.93 \[ \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^2)/tan(c + d*x)^(7/2),x)

[Out]

2*atanh((32*B^2*a^4*d^3*tan(c + d*x)^(1/2)*((B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4
- 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a^3*b)/d^2)^(1/2))/(16*B*a^2*(12*B^4*a^2*b^6*d
^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 16*B*b^2*(12*B^4*a^2*b^6*d^4
 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 192*B^3*a^3*b^3*d^2 + 32*B^3*a
*b^5*d^2 + 32*B^3*a^5*b*d^2) + (32*B^2*b^4*d^3*tan(c + d*x)^(1/2)*((B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4
*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a^3*b)/d^2)^(1/2))/(16*
B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 16*B*
b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 192*B^3
*a^3*b^3*d^2 + 32*B^3*a*b^5*d^2 + 32*B^3*a^5*b*d^2) - (192*B^2*a^2*b^2*d^3*tan(c + d*x)^(1/2)*((B^2*a*b^3)/d^2
 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) -
(B^2*a^3*b)/d^2)^(1/2))/(16*B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^
4*a^6*b^2*d^4)^(1/2) - 16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*
a^6*b^2*d^4)^(1/2) - 192*B^3*a^3*b^3*d^2 + 32*B^3*a*b^5*d^2 + 32*B^3*a^5*b*d^2))*((B^2*a*b^3)/d^2 - (12*B^4*a^
2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a^3*b)/d
^2)^(1/2) + 2*atanh((32*B^2*a^4*d^3*tan(c + d*x)^(1/2)*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B
^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a*b^3)/d^2 - (B^2*a^3*b)/d^2)^(1/2))/(16*B*b^2*(12*B
^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 16*B*a^2*(12*B^4
*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 192*B^3*a^3*b^3*d^
2 + 32*B^3*a*b^5*d^2 + 32*B^3*a^5*b*d^2) + (32*B^2*b^4*d^3*tan(c + d*x)^(1/2)*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d
^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a*b^3)/d^2 - (B^2*a^3*b)/d^2)
^(1/2))/(16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(
1/2) - 16*B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/
2) - 192*B^3*a^3*b^3*d^2 + 32*B^3*a*b^5*d^2 + 32*B^3*a^5*b*d^2) - (192*B^2*a^2*b^2*d^3*tan(c + d*x)^(1/2)*((12
*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a
*b^3)/d^2 - (B^2*a^3*b)/d^2)^(1/2))/(16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4
*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 16*B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d
^4 + 12*B^4*a^6*b^2*d^4)^(1/2) - 192*B^3*a^3*b^3*d^2 + 32*B^3*a*b^5*d^2 + 32*B^3*a^5*b*d^2))*((12*B^4*a^2*b^6*
d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a*b^3)/d^2 - (
B^2*a^3*b)/d^2)^(1/2) - 2*atanh((32*A^2*a^4*d^3*tan(c + d*x)^(1/2)*((A^2*a^3*b)/d^2 - (A^2*a*b^3)/d^2 - (12*A^
4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2))/(16
*A^3*a^6*d^2 - 16*A^3*b^6*d^2 + 112*A^3*a^2*b^4*d^2 - 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4
*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)) + (32*A^2*b^4*d^3*tan(c + d*x)^(1/2)*
((A^2*a^3*b)/d^2 - (A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12
*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2))/(16*A^3*a^6*d^2 - 16*A^3*b^6*d^2 + 112*A^3*a^2*b^4*d^2 - 112*A^3*a^4*b
^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(
1/2)) - (192*A^2*a^2*b^2*d^3*tan(c + d*x)^(1/2)*((A^2*a^3*b)/d^2 - (A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4
*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2))/(16*A^3*a^6*d^2 - 16*A
^3*b^6*d^2 + 112*A^3*a^2*b^4*d^2 - 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*
d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)))*((A^2*a^3*b)/d^2 - (A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^
4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2) + 2*atanh((32*A^
2*a^4*d^3*tan(c + d*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^
6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^(1/2))/(16*A^3*b^6*d^2 - 16*A^3*a^6*d^2 - 112*A^
3*a^2*b^4*d^2 + 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^
4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)) + (32*A^2*b^4*d^3*tan(c + d*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A
^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^(1/2)
)/(16*A^3*b^6*d^2 - 16*A^3*a^6*d^2 - 112*A^3*a^2*b^4*d^2 + 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4
- A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)) - (192*A^2*a^2*b^2*d^3*tan(c + d
*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4
*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^(1/2))/(16*A^3*b^6*d^2 - 16*A^3*a^6*d^2 - 112*A^3*a^2*b^4*d^2 + 112
*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*
b^2*d^4)^(1/2)))*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(
1/2)/(4*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^(1/2) - ((2*B*a^2)/3 + 4*B*a*b*tan(c + d*x))/(d*tan(c + d*x)
^(3/2)) - ((2*A*a^2)/5 - tan(c + d*x)^2*(2*A*a^2 - 2*A*b^2) + (4*A*a*b*tan(c + d*x))/3)/(d*tan(c + d*x)^(5/2))